Branching Scenarios in Eco-evolutionary Prey-Predator Models

نویسندگان

  • Pietro Landi
  • Fabio Dercole
  • Sergio Rinaldi
چکیده

We show in this paper how simulations of ODEs and continuations of systems of algebraic equations can be combined to study the evolution of biodiversity in multi-species systems where phenotypic traits are genetically transmitted. We follow the Adaptive Dynamics (AD) approach, that provides a deterministic approximation of the evolutionary dynamics of stationary coexisting populations in terms of an ODE system, the so-called AD canonical equation. AD also provides explicit conditions to test whether a stable evolutionary equilibrium of the canonical equation is a branching point—resident and mutant morphs coexist and further differentiate thus increasing biodiversity—or not. We analyze a standard parameterized family of prey-predator communities, described by the most standard ecological model, and propose an iterative procedure to obtain the branching portrait, explaining the dependence of branching scenarios on two (demographic, environmental or control) parameters. Among a number of interesting results, in line with field studies and known ecological principles, we find that prey branching is induced by the predation pressure, and is favored when prey intraspecific competition is highly sensitive to the resident-mutant phenotypic mismatch; while predator branching is not possible when prey and predators are present in equal number of morphs. This results in alternate prey-predator branching sequences with possible phases of prey unilateral branching. The guidelines for deriving a general method for analyzing the evolution of biodiversity are also discussed. The indications that can be obtained typically have qualitative nature, but can be of help for the long-term conservation and management of biodiversity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamics of an eco-epidemic model with stage structure for predator

The predator-prey model with stage structure for predator is generalized in the context of ecoepidemiology, where the prey population is infected by a microparasite and the predator completely avoids consuming the infected prey. The intraspecific competition of infected prey is considered. All the equilibria are characterized and the existence of a Hopf bifurcation at the coexistence equilibriu...

متن کامل

Eco-evolutionary interactions between predators and prey: can predator-induced changes to prey communities feed back to shape predator foraging traits?

Question: It is well established that predators can influence the structure and dynamics of prey communities and that changes in prey communities can drive predator evolution. Here we ask whether changes in prey communities, brought on by the effects of predators, can feed back to mould the evolution of predator foraging traits. Study system: We sampled lakes in Connecticut (USA) containing eit...

متن کامل

Predicting Predator Recognition in a Changing World.

Through natural as well as anthropogenic processes, prey can lose historically important predators and gain novel ones. Both predator gain and loss frequently have deleterious consequences. While numerous hypotheses explain the response of individuals to novel and familiar predators, we lack a unifying conceptual model that predicts the fate of prey following the introduction of a novel or a fa...

متن کامل

Evolutionarily Induced Alternative States and Coexistence in Systems with Apparent Competition

Predators often consume multiple prey and by mutually subsidizing a shared predator, the prey may reciprocally harm each other. When predation levels are high, this apparent competition can culminate in a prey species being displaced. Coupling quantitative genetics and Lotka-Volterra models, we study how predator evolution alters this and other ecological outcomes. These models account for a tr...

متن کامل

How the Magnitude of Prey Genetic Variation Alters Predator-Prey Eco-Evolutionary Dynamics.

Evolution can alter the stability and dynamics of ecological communities; for example, prey evolution can drive cyclic dynamics in predator-prey systems that are not possible in the absence of evolution. However, it is unclear how the magnitude of additive genetic variation in the evolving species mediates those effects. In this study, I explore how the magnitude of prey additive genetic variat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM Journal of Applied Mathematics

دوره 73  شماره 

صفحات  -

تاریخ انتشار 2013